eRFSVM: a hybrid classifier to predict enhancers-integrating random forests with support vector machines
نویسندگان
چکیده
منابع مشابه
eRFSVM: a hybrid classifier to predict enhancers-integrating random forests with support vector machines
BACKGROUND Enhancers are tissue specific distal regulation elements, playing vital roles in gene regulation and expression. The prediction and identification of enhancers are important but challenging issues for bioinformatics studies. Existing computational methods, mostly single classifiers, can only predict the transcriptional coactivator EP300 based enhancers and show low generalization per...
متن کاملConditional Random Fields and Support Vector Machines: A Hybrid Approach
We propose a novel hybrid loss for multiclass and structured prediction problems that is a convex combination of log loss for Conditional Random Fields (CRFs) and a multiclass hinge loss for Support Vector Machines (SVMs). We provide a sufficient condition for when the hybrid loss is Fisher consistent for classification. This condition depends on a measure of dominance between labels – specific...
متن کاملDesign of a Novel Hybrid Algorithm for Improved Speech Recognition with Support Vector Machines Classifier
Speaker independent speech recognition system has been a challenging field of research since speech is the most basic and natural means of communication. In this work, a speech recognition system is developed for recognizing isolated words in Malayalam. Here we have used two wavelet based techniques namely Discrete Wavelet Transforms (DWT) and Wavelet Packet Decomposition (WPD) for extracting f...
متن کاملCorrection: LMethyR-SVM: Predict Human Enhancers Using Low Methylated Regions based on Weighted Support Vector Machines
BACKGROUND The identification of enhancers is a challenging task. Various types of epigenetic information including histone modification have been utilized in the construction of enhancer prediction models based on a diverse panel of machine learning schemes. However, DNA methylation profiles generated from the whole genome bisulfite sequencing (WGBS) have not been fully explored for their pote...
متن کاملBuilding Support Vector Machines with Reduced Classifier Complexity
Support vector machines (SVMs), though accurate, are not preferred in applications requiring great classification speed, due to the number of support vectors being large. To overcome this problem we devise a primal method with the following properties: (1) it decouples the idea of basis functions from the concept of support vectors; (2) it greedily finds a set of kernel basis functions of a spe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Hereditas
سال: 2016
ISSN: 1601-5223
DOI: 10.1186/s41065-016-0012-2